Correlation chart for AP Precalculus LO 1.1.A Varying together (analytic)

College Board AP Precalculus LO and EK codes are found in the Course and Exam Description available at https://apcentral.collegeboard.org/courses/ap-precalculus/course OpenStax Precalculus 2 e is a free textbook at https://openstax.org/details/books/precalculus-2e
This document is not endorsed or affiliated with the College Board, AP, or OpenStax.

Example	Requirement	Title	Reward	Correlation
x y 3 -1 5 -4 6 0 7 3 7 25	\square Set R is a set of ordered pairs $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \ldots\right\}$ Set $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ (OK to omit repeats) Variable x takes, one at a time, the values in set X Set $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ (OK to omit repeats) Variable y takes, one at a time, the values in set Y	Definitions of relation, input value, independent variable, output value, dependent variable, domain, and range	Set R is a relation that associates input values of independent variable x with output values of dependent variable y. Set X of all input values is the domain of the relation, and set Y of all output values is the range of the relation.	AP Precalculus EK 1.1.A. 1 is written such that this content seems to be assumed prior knowledge. OpenStax Precalculus 2e 1.1 (HW not assigned)
	Set F is a set of ordered pairs $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \ldots\right\}$ If there are any repeated values among $x_{1}, x_{2}, x_{3}, \ldots$, the associated values among $y_{1}, y_{2}, y_{3}, \ldots$ x_{1}, are also repeats. Set $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ (OK to omit repeats) Variable x takes, one at a time, the values in set X Set $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ (OK to omit repeats) Variable y takes, one at a time, the values in set Y	Definitions of function, input value, independent variable, output value, dependent variable, domain, and range	Set F is a function that maps input values of the independent variable x to corresponding output values of the dependent variable y. Set X of all input values is the domain of the function, and set Y of all output values is the range of the function. (The usual translation of the condition that "If there are any repeated values among $x_{1}, x_{2}, x_{3}, \ldots$ the associated values among $y_{1}, y_{2}, y_{3}, \ldots$ are also repeats" is that each input value is mapped to exactly one output value).	AP Precalculus EK 1.1.A. 1 OpenStax Precalculus 2e 1.1 Exercises \# 1, 2; 6, 7; 8-26; 60, 61, 62; 63, 64, 65; 76, 77, 78; 79, 80, 81; 82, 83, 84; 85, 86, 87 1.2 Exercises \# 7- 25 (odds); 27-37 (odds); 57, 59; 61
	Have function F mapping input values of independent variable x to corresponding output values of dependent variable y I stands for the idea that changing the input value of the independent variable x can change the associated output value of the dependent variable y in a corresponding way.	Style convention for AP Precalculus EK 1.1.A.2 ($1^{\text {st }}$ clause)	Idea I is expressed by writing, "The input values and output values of function F change in tandem according to the rule for function F."	AP Precalculus EK 1.1.A. 2 Independent (first) clause

Correlation chart for AP Precalculus LO 1.1.A Varying together (analytic)

Example	Requirement	Title	Reward	Correlation
	\square Have function f mapping input values of independent variable x to corresponding output values of dependent variable y	Style convention for AP Precalculus EK 1.1.A. 2 ($2^{\text {nd }}$ clause)	The function rule for function f can be expressed in the following ways:	AP Precalculus EK 1.1.A. 2 Dependent (second) clause OpenStax Precalculus 2e 1.1 Exercises \# 27- 31; 32, 33; 34-38; 39; 52, 53, 54; 66; 67; 68-73; 74, 75; 88, 89, 90, 91 1.4 Exercises \# 5, 7, 9
			1. Graphically - plot points with ordered pairs of form (x, y) where values of x are represented along the horizontal axis and values of y are represented along the vertical axis.	
x 1 2 3				
$\begin{array}{l\|l\|l\|l} y & 2 & 4 & 6 \end{array}$			2. Numerically - written as a table or list of ordered pairs of input and output values	
$\{(1,2),(2,4),(3,6)\}$				
$y=f(x)=2 x, x \in\{1,2,3\}$			3. Analytically - written as an algebraically notated equation in the variables x and y in the format $y=f(x)$ where $f(x)$ stands for an algebraic expression in terms of x into which a particular input value of x can be substituted to yield the corresponding particular output value of y	
"The input values are 1, 2, and 3, and the corresponding output values are obtained by doubling the input values."			4. Verbally - as written sentence(s) describing how the independent variable is related to the dependent variable	

Correlation chart for AP Precalculus LO 1.1.A Varying together (analytic)

Example	Requirement	Title	Reward	Correlation
	Have function f mapping input values of independent variable x to corresponding output values of dependent variable y I stands for an interval of x-values in the domain of function f Considering all pairs of x-values a and b such that $a, b \in I$ with $a<b$ guarantees that $f(a)<f(b)$	Definition of increasing function \rightarrow	Function f is increasing over the interval I	AP Precalculus EK 1.1.A. 3 OpenStax Precalculus 2e 1.3 (see next row)
	Have function f mapping input values of independent variable x to corresponding output values of dependent variable y I stands for an interval of x-values in the domain of function f Considering all pairs of x-values a and b such that $a, b \in I$ with $a<b$ guarantees that $f(a)>f(b)$	Definition of decreasing function	Function f is decreasing over the interval I	AP Precalculus EK 1.1.A. 4 OpenStax Precalculus 2e 1.3 Exercises \# 19, 21

